Assimilating satellite radiance observations with a local ensemble Kalman filter

Elana Fertig

José Aravéquia

Seung-Jong Baek

Brian Hunt

Eugenia Kalnay

Eric Kostelich

Hong Li

Junjie Liu

Edward Ott

Istvan Szunyogh

Ricardo Todling

University of Maryland
NASA Goddard Space Flight Center
Arizona State University
CPTEC, Brazil

November 4, 2010

Overview

- Ensemble-based assimilation schemes
 - Utilize flow-dependent forecast uncertainties.
 - Provide superior estimates than operational schemes because they account for "errors of the day."
- Correcting forward model errors
 - Bias correction of radiances in assimilation schemes
 - Ensemble schemes can correct for these biases
- Assimilating satellite observations
 - Radiance observations improve forecasts in temperature and winds

Overview

- Ensemble-based assimilation schemes
 - Utilize flow-dependent forecast uncertainties.
 - Provide superior estimates than operational schemes because they account for "errors of the day."
- Correcting forward model errors
 - Bias correction of radiances in assimilation schemes
 - Ensemble schemes can correct for these biases
- Assimilating satellite observations
 - Radiance observations improve forecasts in temperature and winds

Covariances in 3D and 4D-VAR

Operational systems assume that forecast errors are constant, homogeneous, and isotropic

Structure of Forecast Errors

In reality, forecast errors lie on a low dimensional attractor and depend on the current atmospheric state.

Ensemble Kalman Filter Schemes

Run an ensemble of forecasts from perturbed initial conditions to estimate the forecast error covariance

Local Ensemble Transform Kalman Filter (LETKF)

LETKF finds the best linear combination of the ensemble members fitting observations at the analysis time.

Forecast Uncertainty

Operational Schemes:

- Constant forecast error covariance matrix.
- Subject to "errors of the day".

Ensemble Schemes:

 Propagate the forecast error covariance with an ensemble.

Localization

Perform data assimilation in local patch (3D-window)

The state estimate is updated at the central grid red dot

All observations (purple diamonds) within the local region are assimilated

Localization

Perform data assimilation in local patch (3D-window)

The state estimate is updated at the central grid red dot

All observations (purple diamonds) within the local region are assimilated

Localization

Perform data assimilation in local patch (3D-window)

The state estimate is updated at the central grid red dot

All observations (purple diamonds) within the local region are assimilated

Features of LETKF

- LETKF is model independent and relatively simple to implement.
- Can parallelize the LETKF scheme.
- Gain further efficiency because matrix computations are performed in the space spanned by the ensemble.
- LETKF takes only 5 minutes on a 20 node PC cluster, which is comparable to the computational cost of operational schemes.
- LETKF should provide a more accurate analysis than operational schemes because it utilizes an evolving forecast error covariance.
- LETKF can adjust for "errors of the day."

Comparing LETKF to NCEP's 3D-VAR

- Use NCEP's 3D-VAR (SSI) and LETKF as the data assimilation scheme for T62 NCEP GFS.
- Assimilate all conventional observations for Jan-Feb, 2004.
- Analyses and forecasts are verified against operational T254 analysis.

Comparing LETKF to NCEP's 3D-VAR

- Use NCEP's 3D-VAR (SSI) and LETKF as the data assimilation scheme for T62 NCEP GFS.
- Assimilate all conventional observations for Jan-Feb, 2004.
- Analyses and forecasts are verified against operational T254 analysis.

Szunyogh, Kostelich, et al. (2007) Tellus A

Overview

- Ensemble-based assimilation schemes
 - Utilize flow-dependent forecast uncertainties.
 - Provide superior estimates than operational schemes because they account for "errors of the day."
- Correcting forward model errors
 - Bias correction of radiances in assimilation schemes
 - Ensemble schemes can correct for these biases
- Assimilating satellite observations
 - Radiance observations improve forecasts in temperature and winds

Form of Satellite Observations

Model for unbiased satellite observations is

$$y = h(x^{true}) + \eta,$$

- h takes model state variables into observation space
- x^{true} is the true model state
- η is unbiased random noise
- Biased satellite observation are assumed to be of the form

$$y = \tilde{h}(\mathbf{x}^{\text{true}}, \boldsymbol{\beta}) + \boldsymbol{\eta}$$

 $-\beta$ is a vector of bias parameters to be determined.

Estimating Bias Parameters

Biased satellite observation are assumed to be of the form

$$y = \widetilde{h}(\mathbf{x}^{\text{true}}, \boldsymbol{\beta}) + \boldsymbol{\eta}$$

- β can be estimated online, during the data assimilation procedure (Derber and Wu, 1998; Dee and DaSilva, 1998; Baek et al., 2006)
- Ensemble-based schemes can incorporate a variety of bias correction techniques for radiances, including
 - Variational bias estimate and ensemble analysis (Miyoshi et al., 2010)
 - State space augmentation (Fertig et al., 2009)

LETKF

LEKF finds the best linear combination of the model state ensemble members fitting the observations at the analysis time

LETKF with state space augmentation bias correction

Analysis → [Analysis; Bias]

LETKF with state space augmentation bias correction

Analysis → [Analysis; Bias]

Finds the best linear combination of the ensemble of model states and bias parameters fitting the observations.

Perfect model experiments

Perfect model scenario:

A "true" trajectory is generated by integrating the SPEEDY (low resolution, simplified GCM) model for two simulated months (Jan and Feb, 1982).

Observations:

- Rawinsonde observations (U, V, T, Ps)
- Satellite observations
 - Use pCRTM to simulate 15 AIRS channels.
 - Created at every model grid point.
 - Bias simulated by assuming there is a fractional error in the satellite absorption coefficient (Watts and McNally, 2004).
- Satellite forward model uses raw pCRTM without the Watts and McNally term.

Typical Simulated Satellite Bias

Time averaged satellite observation bias

The simulated bias has a similar structure to the true bias.

Temperature Analysis RMS Error (global and Feb. average)

- Conventional
- Biased satellite and conventional
- Unbiased satellite and conventional
- Constant correction
- Constant and 850 to 300hPa thickness
- Constant and surface skin temperature
- All three predictors.

The bias correction improves the analysis.

Overview

- Ensemble-based assimilation schemes
 - Utilize flow-dependent forecast uncertainties.
 - Provide superior estimates than operational schemes because they account for "errors of the day."
- Correcting forward model errors
 - Bias correction of radiances in assimilation schemes
 - Ensemble schemes can correct for these biases
- Assimilating satellite observations
 - Radiance observations improve forecasts in temperature and winds

Assimilating radiances in NCEP GFS

- Use LETKF as the data assimilation scheme for T62 NCEP GFS.
- Assimilate all conventional observations and AMSU radiances for Jan-Feb, 2004.
- Bias correction terms are (1) constant, (2) scan angle, (3) skin temperature
- Analyses and forecasts are verified against operational T254 analysis.

Assimilating radiances in NCEP GFS

- Use LETKF as the data assimilation scheme for T62 NCEP GFS.
- Assimilate all conventional observations and AMSU radiances for Jan-Feb, 2004.
- Bias correction terms are (1) constant, (2) scan angle, (3) skin temperature
- Analyses and forecasts are verified against operational T254 analysis.

Conventional Observations
Radiances without bias correction
Radiances with bias correction

Bias correction enables positive impacts from AMSU observations.

Assimilating radiances in NCEP GFS

- Use LETKF as the data assimilation scheme for T62 NCEP GFS.
- Assimilate all conventional observations and AMSU radiances for Jan-Feb, 2004.
- Bias correction terms are (1) constant, (2) scan angle, (3) skin temperature
- Analyses and forecasts are verified against operational T254 analysis.

Conventional Observations
Radiances without bias correction
Radiances with bias correction

Cross-correlations enable positive impacts in wind field from AMSU.

Conclusions

- Ensemble schemes efficiently incorporate flowdependent forecast uncertainties in a model independent way.
- LETKF improves the analysis obtained from 3D-VAR.
- LETKF can estimate radiance biases through forward model errors online efficiently.
- Bias correction improves analyses and forecasts in simulations with "perfect model" and real radiances.
- LETKF successfully uses cross-correlations between dynamic variables to improve forecasts of unmeasured variables.

Biased AIRS observations

Typical radiative transfer model:

$$h(\mathbf{x}) = \int B(T(p))d\tau$$
$$\tau = \exp(-\int \kappa(p)\rho(p)dp)$$

 Assume the error in the satellite observations is in the absorption coefficient:

$$\kappa \to \gamma \kappa$$
 $\tau \to \tau^{\gamma}$

• Watts and McNally (2004) find γ = 1.05 for AIRS.